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Abstract

The behavior of high-frequency elastic waves propagating in railroad tracks is relevant to the field of rail
noise generation and long-range rail inspection. While a large amount of theoretical and numerical work
exists to predict transient vibrations propagating in rails, obtaining experimental data has been particularly
challenging due to the multimode and dispersive behavior of the waves.
In this work a joint time–frequency analysis based on the Gabor wavelet transform is employed for

characterizing longitudinal, lateral and vertical vibrational modes propagating in rails in the 1000–7000 Hz
range. The Gabor transform optimizes the time–frequency resolution of the measurements and
theoretically requires a single excitation point and a single measurement point. These features make the
analysis well-suited for the study of wave propagation in rails.
The theory of the wavelet transform is reviewed in the context of dispersive measurements.

Accelerometer data were taken from a section of rail subject to impulse dynamic testing in the laboratory.
The group (energy) velocity dispersion curves and the frequency-dependent attenuation of the waves were
successfully extracted from the wavelet scalograms of the accelerometer signals.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of the vibration characteristics of railroad tracks is critical to predicting the
noise generated by a passing train (wheel/rail noise) as well as in the context of rail defect
detection by long-range inspection. In analogy with beam vibrations, the known vibrational
modes of railroad tracks in the 100–7000 Hz range can be identified as longitudinal (axial)
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modes, lateral modes and vertical modes [1,2]. These vibrations are generally characterized by
complex deformation patterns involving cross-sectional deformations of the rail that make
simple beam vibration models inapplicable, particularly above 1500 Hz: A common feature
is that the displacement of the rail head is dominant at lower frequencies, while cantilever
bending of the rail foot becomes significant at higher frequencies (nominally above
3000 Hz).
While advanced theoretical and numerical models have been developed for predicting the

behavior of transient rail vibrations [1–6], experimental studies are particularly challenging
due to the multimode (multiple modes propagating at the same frequency) and dispersive
(propagation velocities depending on frequency) characteristics of the propagating waves.
Classical Fourier transform techniques cannot be used in multimode and dispersive wave
propagation cases. This is the reason why experimental studies of wave propagation in rails have
been seldom attempted. An impulse hammer excitation with accelerometer detection was
employed in Ref. [7], where the propagation velocities of vertical and lateral rail vibrations were
successfully isolated in the field at various frequencies. The method used in Ref. [7], like the 2-D
Fourier transform method [8], requires multiple, equally spaced measurement (or excitation)
points that limit the practicality of the technique. In addition, limitations to the highest
measurable frequency (5000 Hz in Ref. [7]) and to the maximum number of measurable modes are
imposed by the spacing of the measurement points and by the number of the measurement cross-
sections.
As an alternative to techniques that use waveforms from multiple, equally spaced

measurements, joint time–frequency methods that require only a single signal are gaining
increasing attention for the analysis of multimode and dispersive waves. The wavelet transform
(WT) is one powerful joint time–frequency analysis technique.
A known fact when sampling dynamic signals is that a sufficiently wide time window is

required to appropriately characterize low-frequency components. Conversely, a narrow time
window is appropriate to characterize high-frequency components. This means that a constant
time window cannot maintain adequate resolution in the low-frequency and in the high-
frequency ranges simultaneously, that is the main disadvantage of the short-time Fourier
transform (STFT). When compared to the STFT, the WT has a multiresolution capability
deriving from a flexible window that is broader in time for observing low frequencies and shorter
in time for observing high frequencies [9]. This feature results in high resolution in time as well as
in frequency. When compared to the pseudo-Wigner–Ville distribution (PWVD), that also
optimizes the time–frequency resolution, the WT does not generate signal cross-terms that can be
detrimental when multiple echoes occur [10]. In the field of wave propagation, the multiresolution
capabilities of the WT have been successfully exploited for the study of flexural waves in beams
[9,11,12], guided waves in plates and in thin films [13–15] and for the localization of acoustic
emission sources [16].
This paper shows that the WT can be successfully utilized to measure high-frequency waves

propagating in rail tracks including longitudinal, lateral and vertical vibrational modes at
frequencies as high as 7000 Hz: The results presented were obtained from a rail section tested in
the laboratory by impulse hammer excitation and accelerometer detection. The signals were
analyzed in terms of group (energy) velocity–frequency relationship and frequency-dependent
attenuation.
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2. The wavelet transform

The wavelet transform (WT) of a function f ðtÞ can be written as [17]

Wf ðu; sÞ ¼
Z þN

�N

f ðtÞ
1ffiffi

s
p c�

t � u

s

� �
dt; ð1Þ

where c�ðtÞ is the complex conjugate of the mother wavelet function cðtÞ defined as

cu;sðtÞ ¼
1ffiffi
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s

� �
: ð2Þ

The mother wavelet can be considered as a window function in the time and in the frequency
domains where u is known as the translation parameter and s as the scaling parameter. As
indicated in Eq. (2), u shifts the wavelet in time and s controls the wavelet frequency bandwidth.
The flexible window provides multiresolution capability to the WT thus optimizing the time–
frequency resolution of the analysis.
The mother wavelet function must satisfy the admissibility conditionZ þN

�N

j #cðoÞj2

joj
dooN; ð3Þ

where o is the angular frequency and #cðoÞ is the Fourier transform of cðtÞ: The admissibility
condition imposes that cðtÞ has zero average such thatZ þN

�N

cðtÞ dt ¼ 0: ð4Þ

An analytic wavelet can be created by modulating the frequency of a real and symmetric
window gðtÞ as follows:

cðtÞ ¼ gðtÞ expðiZtÞ: ð5Þ

The Fourier transform of cðtÞ in Eq. (5) is #cðoÞ ¼ #gðo� ZÞ with a center frequency of Z:
According to the Heisenberg uncertainty principle, a signal cannot be fully resolved both in

time and in frequency simultaneously. The time–frequency resolution of the signal depends on the
time–frequency resolution of the analyzing wavelet cu;sðtÞ [17]. Each time–frequency window
cu;sðtÞ can be represented by a Heisenberg box centered on the frequency axis at Z=s and on the
time axis at u: The sides of the Heisenberg box are of lengths so=s and sst where so is the spread
of the wavelet window in frequency and st is the spread of the wavelet window in time. The
uncertainty principle implies that the area of the Heisenberg box must be lower bounded by 0.5,
that is stsoX0:5:
In this study the Gabor wavelet transform (GWT) is chosen because it provides the best balance

between time resolution and frequency resolution since it uses the smallest possible Heisenberg
uncertainty box ðstso ¼ 0:5Þ [17]. In the case of the Gabor wavelet, gðtÞ is a Gaussian window
defined as
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1ffiffiffiffiffiffiffiffiffiffiffi
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where Z is the wavelet center frequency, s is the standard deviation of the Gaussian window, and
Gs ¼ sZ is known as the Gabor shaping factor.
The choice of Z and Gs influences the time–frequency resolution of the analysis. As commonly

done in joint time–frequency studies of wave propagation [9,11,14,16], the Gabor wavelet center
frequency used here is 2p: Since the signal angular frequency o is given by Z=s; choosing Z ¼ 2p
conveniently sets the inverse of the scaling parameter equal to the frequency, that is 1=s ¼ f ¼
o=2p:
As for the Gs parameter, while the product of the time resolution and the frequency

resolution (area of the Heisenberg box) is kept at the best possible value of 0.5 with
the Gabor wavelet, the choice of the factor Gs (and therefore s; for fixed Z) selects the
relative resolution achievable in time and in frequency (shape of the Heisenberg box). For
example, decreasing Gs decreases the achievable time resolution while increasing the frequency
resolution.
The optimum value of Gs must be chosen on the basis of the particular application. Although

theoretically any value of Gsc1 will satisfy the admissibility condition equation (3), it
has been found in practice that Gs cannot have a value lower than 3.5 [12]. Most
authors use Gs ¼ 5:336 for dispersive wave propagation studies [9,11,14,16]. The choice
of this values of Gs in the present paper will be further justified on the basis of a pilot
experiment discussed in Section 3 involving flexural vibrations in cylindrical waveguides. The
Gabor wavelet with Z ¼ 2p and Gs ¼ 5:336 is plotted in Fig. 1 in the time and in the frequency
domains.
The energy density spectrum of a WT, defined as Pwf ðu; sÞ ¼ jWf ðu; sÞj2 and commonly referred

to as a scalogram, indicates the energy of signal f ðtÞ in the Heisenberg box of each wavelet
window cu;sðtÞ around time t ¼ u and angular frequency o ¼ Z=s: The scalogram is often
normalized by the scaling parameter. In this case it is referred to as the normalized scalogram
Pwf ðu; sÞ=s: Besides providing the time–frequency information of the signal components, the
scalogram retains the signal energy content. It is therefore possible to extract both the dispersion
curves and the frequency-dependent attenuation.

ARTICLE IN PRESS

Fig. 1. The Gabor wavelet with Z ¼ 2p and Gs ¼ 5:336: (a) Time domain : —-, real component; - - - - -, imaginary

component. (b) Magnitude of Fourier spectrum.
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3. Pilot test: flexural waves in a cylindrical waveguide

The effectiveness of the GWT for dispersion measurements was first assessed in the case of a
slender, isotropic cylindrical waveguide for which well-established, theoretical solutions exist. In
particular, the role of the Gabor shaping factor Gs was investigated for the lowest order flexural
mode.
Following the formulation of Ref. [18], the Pochhammer–Chree frequency equation describing

elastic waves in a cylindrical waveguide of radius r can be written as

b2 � 1� ðqrÞ2
v � 1

2v � 1
b2 � 1� ðqrÞ2 2ðb2 � 1ÞjbðqrÞ � ðqrÞ2

�1 vjbðqrÞ � 1 b2 � 2jbðqrÞ � ðqrÞ2

jbðprÞ ð1� vÞjbðqrÞ b2

									

									
¼ 0; ð7Þ

where p2 ¼ ðo=cLÞ
2 � k2; q2 ¼ ðo=cT Þ

2 � k2; v ¼ 0:5ðo=kcT Þ
2; jbðprÞ ¼ ðprÞJ0bðprÞ=JbðprÞ; jbðqrÞ

¼ ðqrÞJ0bðqrÞ=JbðqrÞ; cL and cT are the bulk longitudinal and shear wave velocities, respectively;
o ¼ 2pf is the angular frequency; k is the wavenumber; Jb is a Bessel function of order b and
J0bðxÞ ¼ 0:5½Jb�1ðxÞ � Jbþ1ðxÞ	:
The lowest order flexural mode, typically referred to as F ð1; 1Þ; is obtained from Eq. (7) for

b ¼ 1: For a given vibrational mode, Eq. (7) predicts one or more real values of k for a given o:
The group (energy) velocity dispersion curves, cgð f Þ; can be directly found from equation (7)
considering that cg ¼ do=dk:
The experiments were conducted on a steel rod having a diameter of 31:75 mm and a length of

1060 mm: One end of the rod was struck transversely by an instrumented impulse hammer and the
propagating signal was detected at the opposite end by an accelerometer (flat frequency response
from 0 Hz to about 15 kHz). The accelerometer sensitive axis was along the rod radial direction
so as to detect flexural waves. The group velocity was measured at the various frequencies by
considering the difference in arrival times between the first arrival (propagating across one rod
length) and the first echo (propagating across three rod lengths). The arrival times were identified
at each frequency from the GWT scalogram of the recorded time waveforms. The group-velocity
extraction procedure is discussed in more detail in Section 4.2 when presenting the rail tests.
The experimental results are presented in Fig. 2(a) for three different values of Gs used for the

analyzing wavelet. The center frequency Z was kept constant at 2p: The three values examined are
Gs ¼ 3:5; 5.336 and 8.0. The theoretical solution from Eq. (7) is also presented in Fig. 2(a) with
cL ¼ 5:8 km=s and cT ¼ 3:2 km=s for steel. The discrepancies between experimental and
theoretical results are plotted in Fig. 2(b) in terms of relative percentage mismatch. This quantity
is defined as ½ðE � TÞ=T 	 
 100 where E is an experimental value and T the corresponding
theoretical prediction. These mismatches are caused by the finite time–frequency resolution
inherently associated to the uncertainty principle. From Fig. 2(b), the average relative mismatch
(in absolute value) over the entire frequency range 800–10 500 Hz is measured at 5.31% for
Gs ¼ 3:5; 3.3% for Gs ¼ 5:336 and 5.1% for Gs ¼ 8:0: The value of Gs ¼ 5:336 is therefore the
best compromise between frequency and time resolutions in this test. It is also clear from
the figure that the mismatch tends to increase at the lower frequencies, due to the larger size of the
wavelet time window required by the Heisenberg principle. Below 1700 Hz; the average relative
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mismatch is measured at 4.5% for Gs ¼ 3:5; 4.1% for Gs ¼ 5:336 and 13.7% for Gs ¼ 8:0: The
intermediate value of Gs ¼ 5:336 is still the best choice.

4. Rail testing

4.1. Experimental set-up

Dynamic testing was conducted on a 4.6m long section of a 115 lb/yard American Railway
Engineering Association (AREA) tee rail. The test section was donated by the San Diego Trolley,
Inc. company. The rail was laid in the laboratory on wooden sleepers with a 0:61 m ð2 ftÞ spacing
with steel pads and no fasteners. The same instrumented impulse hammer used for the rod test
was employed to excite a broadband signal at one end of the rail. The same accelerometer (flat
frequency response from 0 Hz to about 15 kHz) was employed to detect the vibrations
propagating to the other end of the rail.
As schematized in Fig. 3, longitudinal (axial) vibrational modes were examined by exciting and

detecting the waves longitudinally (Fig. 3(a)); lateral and vertical vibrational modes were
examined by exciting and detecting the waves transversely and vertically, respectively (Figs. 3(b)
and 3(c)). Signal excitation and detection were performed at the opposite ends of the rail where no
sleepers were placed so as to limit damping at these cross-sections. While excitation was always
performed at the rail head, detection was attempted at the rail head and the rail foot in all of the
test configurations examined. Foot signals yielded an acceptable signal-to-noise ratio (SNR) only
in the case of the vertical vibrations (Fig. 3(c)) at frequencies above 2200 Hz: For the longitudinal
and the lateral tests the displacement of the rail head was large enough in the 1000–7000 Hz
frequency range examined.
The smallest frequency value that can be properly analyzed by the WT is directly related to the

total number of points used when sampling the signal [17]. The present study used a sampling rate
of 1 MHz for a maximum recording time of 0:01 s: This sampling rate was appropriate to capture
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Fig. 2. Group velocity dispersion curve for the lowest order flexural mode in a steel rod. (a) Measured by Gabor

wavelet transform with Z ¼ 2p : &; Gs ¼ 3:5;
; Gs ¼ 5:336; J; Gs ¼ 8:0; —-, from Pochhammer–Chree theory.

(b) Relative percentage mismatch between measurements and theory.
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the largest frequency expected. The recording time was such that only the first arrival and the first
echo were recorded. The lower-bound frequency value of 1000 Hz in the WT analysis was dictated
by these digitization constraints. The upper-bound value of 7000 Hz resulted from the poor SNR
of the measurements beyond this limit (typical SNRB1 dB for the longitudinal wave at 7000 Hz).
This limitation derived primarily from the �30 dB roll-off of the hammer excitation signal beyond
7000 Hz:
For the extraction of group velocity values and attenuation values as a function of frequency,

the accelerometer signals were analyzed by comparing the first detected arrival (propagation
across one rail length) with the first detected echo (propagation across three rail lengths). This
dual measurement scheme is often used in wave propagation studies, particularly when an echo
signal is available from the free end of the structure under investigation. The main advantage for
the measurement of wave velocities and attenuation is that the results are not dependent on the
characteristics of the excitation signal. The hammer used in this study typically produced a pulse
with a duration of 0:25 ms and a frequency response with a �6 dB roll-off at 3000 Hz: The finite
pulse duration would introduce an uncertainty in the measured velocity if a single detected signal
were used. The uncertainty would also be dependent on the particular trigger level used for the
acquisition. Similarly, the finite bandwidth of the hammer signal would make it difficult to
determine directly the frequency-dependent attenuation with a single detection. Another
advantage of the dual detection scheme is that the propagation length being probed is doubled
when compared to a single detection (two rail lengths against one rail length). The extraction of
wave velocity and attenuation is carried out over a larger distance thereby increasing the accuracy
of the measurements.
The only known rail vibrational modes that were not successfully identified in the present study

are the torsional mode and the two higher order lateral mixed modes predicted in previous
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Fig. 3. Experimental set-up for the study of (a) longitudinal, (b) lateral and (c) vertical vibrations propagating in rails.
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analyses [2,4]. Different arrangements for the signal excitation and detection may be required for
these cases.

4.2. Results: wavelet scalograms

Representative time histories recorded by the accelerometer for the longitudinal, the lateral and
the vertical vibrations are presented in Figs. 4(a), 5(a) and 6(a) respectively. These signals were all
detected at the rail head. The dispersive nature of the waves is evident in the plots. The
corresponding GWT normalized scalograms in the frequency range 1000–7000 Hz are presented
below the time histories in Figs. 4(b), 5(b) and 6(b). The three scalograms clearly indicate the first
arrival of the wave packets after travelling for one rail length and the first echo that has
propagated three times the rail length. The different shape of the wavelet contours corresponding
to the first arrivals and to the echoes is due to the wave dispersion and frequency-dependent
attenuation phenomena.
The scalogram in Fig. 4(b) for the longitudinal test shows an additional wave packet that is

centered at around 6000 Hz with arrival time of about 3:5 ms: This signal is identified as the first
arrival of one of the higher order longitudinal modes that are known to exist in rails above
5000 Hz [2]. Higher order modes will be discussed more extensively in Sections 4.3 and 4.4.
Successful identification of this additional mode is a classical example of the effectiveness of the
WT time–frequency analysis of multimode signals.
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Fig. 4. (a) Recorded longitudinal vibrations in the time domain. (b) Normalized Gabor wavelet scalogram of trace (a)

(contour plot).
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The time–frequency information contained in the normalized scalograms can be used to
determine the group velocity dispersion curves and the frequency-dependent attenuation curves.
One important point is that since the scalogram is a map of the energy of the signal, it is the wave
group (energy) velocity that is measured, rather than the wave phase velocity. The line profile plot
in Fig. 6(c) demonstrates the extraction procedure for the vertical wave at a frequency of 2000 Hz:
At each frequency value, the time difference between the first arrival and the echo is directly
related to the wave group velocity through the known length of the rail. This step involves a peak
finding numerical routine to extract the arrival times of the wave packets with largest energy
(ridges of the scalogram). The group velocity can be expressed as

cgð f Þ ¼
2L

t2ð f Þ � t1ð f Þ
; ð8Þ

where L is the length of the rail, tð f Þ is the arrival time of the GWT scalogram ridge at the
frequency f ; and the subscripts 1 and 2 refer to the first arrival and the echo respectively.
Similarly, the energy of the first arrival relative to that of the echo is related to the wave

attenuation. A linear attenuation coefficient að f Þ expressed as decibel per meter of propagation
length can be defined as

að f ÞðdB=mÞ ¼
10 log½A1ð f Þ=A2ð f Þ	

2L
; ð9Þ
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Fig. 5. (a) Recorded lateral vibrations in the time domain. (b) Normalized Gabor wavelet scalogram of trace (a)

(contour plot).
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where Að f Þ is the magnitude of the scalogram ridge at the frequency f ; the subscripts 1 and 2 still
refer to the first arrival and the echo, respectively, and L is expressed in m. The quantity in Eq. (9)
is sometimes referred to as decay rate.

4.3. Group velocity dispersion curves

Fig. 7 shows the group velocity dispersion curves for the longitudinal, the lateral and the
vertical vibrational modes obtained from the corresponding GWT scalograms. For comparison,
the plots include the velocity values obtained by the classical finite element analysis of rail
vibrations in Ref. [2] that examined a UIC861-3 rail. Ref. [2] presents the dispersion results in
terms of wavenumber ðkÞ versus frequency ð f Þ: The known relation cg ¼ 2p df =dk was applied for
the group velocity representation used in Fig. 7.
The plots in Fig. 7(a) show that three longitudinal modes were successfully identified as

predicted by previous analyses [2,3]. It should be noted that the two higher-order modes are
sometimes referred to as ‘‘vertical’’ vibrations [3] due to the dominant foot flapping
displacements. Since it is the non-negligible axial head displacement that was detected in the
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Fig. 6. (a) Recorded vertical vibrations in the time domain. (b) Normalized Gabor wavelet scalogram of trace (a)

(contour plot). (c) Line profile of scalogram at f ¼ 2000 Hz showing procedure to extract group velocity and

attenuation values.
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tests presented, these modes are here called ‘‘longitudinal’’ following the notation in Ref. [2]. The
overall behavior of the measured modes is qualitatively similar to the predictions of Ref. [2].
Perfect matching was not expected because the geometry of the UIC861-3 rail used in the analysis
is slightly different from that of the 115 lb/yard AREA rail tested in the laboratory.
The lowest order longitudinal mode, L0 (denominated ax1 in Ref. [2]), propagates at an average

group velocity of around 5 km=s up to 5200 Hz and slows down to 1 km=s above 5200 Hz: For
steel, with nominal modulus E ¼ 210 GPa and density r ¼ 7800 kg=m3; the longitudinal velocity
in a rod in the low frequency
 diameter region (bar velocity) is sqrtðE=rÞ ¼ 5:2 km=s: This value
matches well with the average velocity measured in Fig. 7(a) at low frequencies. The first of the
higher order modes, L1 (ax2 in Ref. [2]), cuts on at 5300 Hz and propagates dispersively at
velocities above 4 km=s: The second higher order mode, L2 (ax3 in Ref. [2]), cuts on at 5900 Hz
and propagates at 1:5 km=s with negligible dispersion.
One noticeable feature of the experimental results in Fig. 7(a) is that L0 exhibits some

dispersion in the low frequency range (1000–3000 Hz). Dispersion is not expected in the
predictions of Ref. [2] for the dominant longitudinal mode below 5000 Hz: No other experimental
results for this particular mode below 4500 Hz seem to exist in the open literature. It could be
argued that the measured dispersion is the result of inaccuracies in the determination of the arrival
times from the GWT scalogram. However, the finite time window of the wavelet used here is
adequately small to properly represent the dispersive signals. A simple simulation test was carried
out to demonstrate this point. A short, non-dispersive pulse (0:3 ms duration) was simulated in
the time domain as shown in Fig. 8(a). A finite impulse response (FIR) digital notch filter was
applied to the short pulse to investigate any role of frequency-dependent attenuation on the
apparent dispersion measurements. The specific filter used a notch frequency of 1760 Hz with a
�3:5 dB stopband bandwidth of 800 Hz and zero phase distorsion. The filtered pulse is shown in
the same Fig. 8(a) delayed by B2 ms from the unfiltered pulse. The GWT scalogram (Z ¼ 2p and
Gs ¼ 5:336) applied to the time waveform is presented in Fig. 8(b). The analysis properly
represented the non-dispersive character of the signals throughout the 1000–9000 Hz: The result is
better seen in the arrival time plots of Fig. 8(c) extracted from the scalogram ridges. The larger
width of the GWT contours at the low frequencies is a necessary consequence of the uncertainty
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Fig. 7. (a) Group velocity dispersion curves for the longitudinal modes: �; lowest order mode L0; W; higher order
mode L1;J; higher order mode L2; - - - - -, theoretical results by Gavric in Ref. [2] for mode L0; – –, theoretical results
in Ref. [2] for modes L1 and L2. (b) Group velocity dispersion curves for the lateral and for the vertical modes: \;
vertical mode; m; lateral mode; – –, theoretical results in Ref. [2] for vertical mode; - - - - -, theoretical results in Ref. [2]
for lateral mode.
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principle and it does not affect the determination of the energy arrival time (positions of the ridges
of the contours). Fig. 8 also confirms that frequency-dependent attenuation does not affect the
velocity measurements.
Excluding an analysis error in obtaining the dispersive behavior at the low frequencies in

Fig. 7(a), one possible explanation is the occurrence of phase changes at the reflecting ends of the
rail. As the rail section was cut manually with a blow torch, the end surfaces were not perfectly
flat. This possibility is substantiated by noting that the dispersion seen in the echo signal is almost
non-existent in the first arrival in Fig. 4(b).
The group velocities measured for the lateral and the vertical modes are shown in Fig. 7(b)

together with the predictions of Ref. [2]. In this reference the two modes are denominated fh

(flexural horizontal) and fv (flexural vertical) respectively. It can be seen, again, that the
measurements agree qualitatively with the predictions. A general observation is that both the
lateral and the vertical modes propagate at lower velocities than the longitudinal mode for
frequencies below 5200 Hz: This behavior is expected given the lower propagation velocity of
bending modes when compared to axial modes in prismatic waveguides at low frequencies.
Moreover, the vertical mode is slightly faster than the lateral mode throughout the frequency
range examined. The same trend was confirmed in previous analyses [2,3] and field measurements
[7] on rails. The average measured velocity is 2 km=s for the vertical mode and 1:7 km=s for the
lateral mode. Above 1 kHz; the vertical mode of a rail can be approximated to shear-dominated
bending vibrations (Timoshenko beam) with nominal velocity equal to sqrtðG0=rÞ where the
equivalent shear modulus G0 is 0.4 times the shear modulus G: For G ¼ 82 GPa and r ¼
7800 kg=m3; the nominal vertical wave velocity is 2 km=s that matches exactly with the average
measured value. Both the vertical mode and the lateral mode exhibit an appreciable dispersive
behavior in Fig. 7(b). The group velocities generally increase with frequency for the lateral mode
and exhibit a non-monotonic dependence on frequency for the vertical mode.

4.4. Frequency-dependent attenuation

The frequency-dependent attenuation values obtained from the GWT scalograms are presented
in Fig. 9 for the longitudinal, the lateral and the vertical modes. Attenuation in these tests is
primarily the result of energy losses in the sleeper supports with a minor contribution of material
damping. The possibility for mode conversion at the reflecting ends as another possible cause of
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Fig. 8. (a) Simulated unfiltered and filtered pulses in the time domain. (b) Normalized Gabor wavelet scalogram of

trace (a) with Z ¼ 2p and Gs ¼ 5:336: (c) Arrival times extracted from scalogram: �; unfiltered pulse; \; filtered pulse.
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attenuation was eliminated as the scalogram contour patterns did not reveal the presence of
mode-converted waves.
Attenuation values for the longitudinal modes in Fig. 9(a) are relatively small as expected in

acoustic waveguides. The attenuation of mode L0 tends to increase with frequency above 2500 Hz
reaching the maximum value of 0:5 dB=m at 7000 Hz: The attenuation minimum of 0:05 dB=m
for this mode is found at 1000 and 2500 Hz: Contrarily to L0, the higher order modes L1 and L2
attenuate at a lower rate with increasing frequency from a maximum value of 0:47 dB=m
measured at the respective cut-on frequencies of 5300 Hz for L1 and 5900 Hz for L2.
Comparing the data in Fig. 9(b) to those in Fig. 9(a), it is clear that the attenuation rates

measured for the lateral and the vertical modes are generally larger than those of the longitudinal
modes. This behavior is expected as the bending vibrations are more sensitive to damping in the
supports than their longitudinal counterparts. Also from a material damping standpoint, shear-
dominated waves are generally characterized by larger losses than longitudinal-type waves. The
attenuation of the lateral mode is larger than that of the vertical mode below 3000 Hz; the
opposite trend is observed above 3000 Hz with the exception of two measurement points.
The minimum attenuation of 0:2 dB=m for the vertical mode is measured at 1000 and 2000 Hz:
Above 2000 Hz; the attenuation for this mode generally increases with frequency reaching
1:7 dB=m at 7000 Hz: For the lateral mode, the minimum attenuation of 0:3 dB=m is found at
1850 Hz and losses stabilize at 0:9 dB=m at 7000 Hz: The attenuation values measured in Fig. 9(b)
have the same order of magnitude as the decay rates obtained by other authors in the 0–5000 Hz
range [4,19,20]. As a specific example, the lateral wave decay rates obtained in these previous
works are typically upper bounded by 1 dB=m above 1000 Hz as seen in Fig. 9(b). The general
increase of the attenuation with frequency is due to the increased participation of the rail feet to
the vibration. Feet vibrations are strongly affected by the large damping in the supports as
previously noted in Ref. [19].

5. Conclusions

This paper shows the use of a joint time–frequency analysis based on the wavelet transform to
characterize high-frequency multimode and dispersive waves propagating in railroad tracks.
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Fig. 9. (a) Linear attenuation coefficients for the longitudinal modes: �; lowest order mode L0; W; higher order mode
L1; J; higher order mode L2. (b) Linear attenuation coefficients for the lateral and for the vertical modes: \; vertical
mode; m; lateral mode.
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Wavelet transforms optimize the time–frequency resolution of dynamic measurements and,
theoretically, only require a single excitation point and a single detection point.
The Gabor wavelet transform was first applied to the flexural vibrations of a cylindrical

waveguide for which exact theoretical solutions exist. This test showed the importance of the
proper selection of the wavelet parameters for dispersive studies. A 4.6m long section of 115 lb/
yard AREA rail was then subject to impulse testing in the laboratory. Three longitudinal modes,
one lateral mode and one vertical mode were successfully identified in the 1000–7000 Hz range by
the joint time–frequency analysis. The group (energy) velocity dispersion curves and the
frequency-dependent attenuation of the waves were obtained from the corresponding wavelet
scalograms.
The measurements qualitatively agree with previous literature results of rail vibration studies.

An unexpected dispersive behavior measured for the lowest order longitudinal mode was
explained by possible phase changes occurring at the rail reflecting ends. The two higher order
longitudinal modes cut on at 5300 and at 5900 Hz; respectively. The lateral and the vertical modes
exhibit appreciable dispersion. Moreover, the lateral mode is always slower than the vertical mode
and both modes are slower than the longitudinal mode below 5200 Hz:
The attenuation rates of transient vibrations in rails are generally low as expected in acoustic

waveguides where beam spreading is minimized. Minimum attenuation is measured at 1000 and
2500 Hz for the lowest order longitudinal mode. The attenuation of the higher-order longitudinal
modes decreases with increasing frequency from the maximum value of 0:47 dB=m occurring at
the respective cut-on frequencies. The attenuation rates of the lateral and the vertical modes are
generally larger than those of the longitudinal modes. Minimum attenuation is found at 1850 Hz
for the lateral mode and at 1000 and 2000 Hz for the vertical mode. However, the absence of
fasteners in the laboratory set-up examined in this work would make it difficult to extrapolate the
attenuation results to the field.
Field testing will be performed in a subsequent phase of this research by using the same time–

frequency analysis. Since a reflection from the rail end would not generally be available in the field, a
pair of accelerometers could be used to exploit the advantages of the dual detection scheme. Although
dual detection is advisable as discussed in Section 4.1, a single detection point is theoretically required
to extract velocity and attenuation values once the excitation signal is well characterized.
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